Al-Suod, Mahmoud and Victor, Busher and Valerii, Tytiuk and Olha, Chorna and Galina, Sivyakova and Zannon, Mohammad and Dmytro, Zhuk (2025) Forecasting Energy Consumption of a Mining Plant Using Artificial Neural Networks. IEEE Access, 13. pp. 63237-63247. ISSN 2169-3536
![[thumbnail of Forecasting_Energy_Consumption_of_a_Mining_Plant_Using_Artificial_Neural_Networks.pdf]](https://repository.onma.edu.ua/style/images/fileicons/text.png)
Forecasting_Energy_Consumption_of_a_Mining_Plant_Using_Artificial_Neural_Networks.pdf
Завантажити (3MB)
Анотація
This study addresses the issue of forecasting active and reactive power consumption at a mining
and processing plant, aiming to improve the efficiency of energy resource management. It explores existing
approaches to modelling and analysing electricity consumption, including methods for forecasting active
power to accurately assess the energy needs of industrial enterprises, as well as methods for estimating
reactive power required to compensate for reactive components and stabilize grid parameters. Using real
electricity consumption data from an industrial enterprise, the completed training and research demonstrates
the potential to forecast energy consumption for the next 24 to 48 hours using artificial neural networks with
nonlinear autoregressive architecture. It also provides rationale for pre-processing initial data to enhance
forecast accuracy. These approaches contribute to reducing capital and operating costs, improving the
reliability and stability of energy systems, and optimising operating efficiency.
Тип матеріалу: | Наукова стаття |
---|---|
Ключові слова: | Autoregressive (NAR), data pre-processing, industrial electricity consumption, load forecasting, nonlinear. |
Тематики: | J Транспорт та послуги > J5 Морський та внутрішній водний транспорт > J5.03 Експлуатація суднового електрообладнання і засобів автоматики |
Розміщено: | Оксана Глазєва |
Дата розміщення: | 09 Sep 2025 11:57 |
Останні зміни: | 09 Sep 2025 11:57 |
URI: | https://repository.onma.edu.ua/id/eprint/409 |